
E'MM U.S.S.R.,Vo1.53,No.2,pp.165-173,1989 0021~8928/89 $10.00+0.o0 
Printed in Great Britain 01990 Perqamon Press plc 

SOME NEW DYNAMICAL EFFECTS IN THE PERTURBED EULER-POINSOT PROBLEM, 
DUE TO SPLITTING OF SEPARATRICES* 

An investigation is presented of a series of new qualitative dynamical 
effects, due to the phenomenon of the splitting of the asymptotic surfaces 

S.A. EOVBYSH 

(separatrices) of perturbed permanent rotations in the motion of an 
asymmetric rigid body with fixed point in a weak gravitational field (or, 
in greater generality, an axisymmstric irrotational field). A quantitative 
index of the non-coincidence of the separatrices is defined and appropriate 
estimates are established. Condition6 are found which, when imposed on 
the parameters of the problem, imply the existence of invariant tori 
separating perturbed hyperbolic permanent rotations. It is shown that for 
almost all values of the parameters there exist quasirandom motions due 
to the existence of transversally intersecting separatrices. Bifurcation 
effects, represented by infinitely many Change6 in the qualitative 
behaviour pattern of the trajectories as the Poincard parameter tend6 to 
zero, are observed and studied. This paper is a continuation of /l/. 

1. Sptitti?Z(.j Of 8eparclt2%?4?8 and thf2 lWthOd Of ?KWllKZt MOSSr CiRWdirurts8. 

Let U be a domain in the real plane R* (2, z*}, and u a small parameter, IpI<s. We 
consider the system 

ds aH dz= ax 
==wi 7=-F (1-i) 

(H (Xl, f, cp, IL) = Ho (X't 2") + p'H, (z', x2, 'p) + - . .I 

where the Hamiltonian is a 2n-periodic function of the time cp, analytic on the direct product 

u {X1, X2} x B {cpmod 25-c) x (-8, e) 

Let the unperturbed Hamiltonian system 

(1.2) 

have fixed hyperbolic points xl, xn, x,E U (x1 and xI may coincide), connected by two 
doubly asymptotic solutions x1* (cp), x1* (cp) that lie in the interior of U: 

,lim x%*((y) = xk, lim xk*((p) =Xx+1; k = I,2 
V--Q= cp-+m 

The solutions that are asymptotic as 'p-f --oo or cp-+ $00 to a given periodic hyper- 
bolic solution form two invariant surfaces, known respectively as outgoing and incoming 
separatrices. 

System 11.2) has two pairs of coinciding (double) asymptotic surfaces of hyperbolic 
periodic solutions: the outgoing separatrix pl" of the solution x=x1 and incoming eepar- 
atrix rl' of the solution 5 E 52, on the one hand, and the outgoing separatrix I'%' of the 
solution 5s xa and incoming separatrix r2" of the solution X= 53, on the other. 

If p# 0 is small, the 2n-periodic hyperbolic 6OlUtiOn6 5 = I* (i = 1,, 2, 3) and their 
asymptotic surface6 do not disappear, but are only somewhat deformed. In ,tbe general case, 
however, as observed by Poincare., the separatrices may cease to be double (split) for small 
values of the parameter u#O. 

SUppOSe that for Small p>,b the SOlUtiOn6 X=Xi became 6OlUtiOn6 X=X;(v) and 
the perturbed separatrices rl’, rl” ana rB’, rr” Split ma do not intersect, 60 that r,* 
lies to one side of rk’ (a section of the plane 'p I const is illustrated in Fiq.1). Simple 
sufficient condition6 have been derived /l/ for the separatrices rk* to remain distinct for 
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all small p> 0 and the results have been used to study the sepatrices of the perturbed 
Euler-Poinsot problem. The proofs were based on the use of normal Moser coordinates (see 
below). 

Fig.1 

The "uniform version" of Moser's theorem states the following. There is a change of 
variables 

which is real-analytic in 5, q, 'p, p for sufficiently small I5 I, I’1 I, I p I and 2*-periodic 
in cp, under which system (1.1) assumes normal form (the dot denotes differentiation with 
respect to w) 

d%ldq = i3Flaq, dqldq = -i?FJa% 

o = %q, F(o, p) = F, (0) + pF,(o) f . ., F;(O) = A> 0 
(1.3) 

We may assume that the outgoing separatrix q = 0, %> 0 is rz', and the incoming separ- 
atrix 5 = 0, q> 0 is rI'. !f!he coordinates f, q, cp are known as normal coordinates. Using 
them systematically, one can detect and investigate various new dynamical effects due to the 
splitting of the separatrices. The important points here are, first, that system (1.3) is 
trivially integrable, and, second, that one has formulae transforming from normal coordinates 
in the neighbourhood of the solution .r = si (V-4 to normal coordinates in the neigbbourhood 
of the solution x = S+r(Cp) /l/. These formulae are defined in neighbourhoods Vi of the 
separatrices ri',ri" that do not contain the unperturbed solutions I= xi, rz zi+r, respectively. 
In domains of type V, and Vg it is convenient to transform from 5, n to coordinates J, 'pl 
and J, pa, respectively, where J = u-lo and the phases 'p19 92 are related to n, 5 by the 
conditions 

x1* (r + CpJ = Do (0, r) exp (--AT)) 

x2* (r + cpz) = a0 (E exp (AT), 0) 

(1.4) 

(1.5) 

A special role in the transformation formulae is played by certain improper integrals 

known as the characteristic integrals, which are Zn-periodic functions. In particular, to a 
first approximation with respect to u the transformation formulae in Vi, expressed in terms 

of J, 'p1* 'pl coordinates, depend only on the functions J, (cp) and the characteristic exponents 

49 &*1 of the unperturbed hyperbolic solutions x SE li, x E X*+1. Therefore, the relative 
positions of the separatrices ri’, ri’ are determined by the behaviour of the functions 
J1 (cp) 12, 11. The case illustrated in Fig.1 is possible only if J, (cp) > u, J, ('0) < 0. 

Henceforth, R,, . ., RI, will denote certain analytic functions and c,,..., c,, constants. 

2. Criteria for sepurtztrices to be distinct. Order of non-coin&&nce. 

Definition 1. We shall say that two positive variables quantities (depending on u) are 
cf the same order if their quotient remains bounded between two positive constants (for all 
small p>O). 

Definition 2 (see Fig.1). Let w,, w, be small, fixed neighbourhoods of the unper- 
turbed hyperbolic solutions 2~ X~,IE rs, whose boundaries BW,, cYW, are smooth surfaces 
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transversally intersecting the unperturbed separatrix x1*, Consider the sections rl"-, r8'" 
of rl", r*" lying near x,* outside the fixed neighbourhoods of Then the index of 
non-coincidence (IN) of the separatrices rri, rl" 

?a* ra. 
is defined as the infimum of the set of p 

such that I'*'- lies in the p-neighbourhood of I','-. 
We shall assume henceforth that J,qkO or J,fO, i.e., splitting of at least one 

of the separatrices x1*, x2* is captured by first-order perturbation theory. 

Theorem 1. 1) Definition 2 may be modified in either of several ways: a) replacing x1* 

by xl* and the neighbourhood W, of the unperturbed solution XE x8 by an analogous neighbour- 
hood Wrof the solution XE x1; or b) taking other small neighbourhoods of the solutions 
5 E 22% x zx,; or c) considering the set of p such that I'r"- lies in the p-neighbourhood 
of rz”-. In any case, the new IN of the separatrices rl',rz" is of the same order as the 
old one. 

2) the separatrices rr", ra" remain distinct for all sufficiently small r> 0 if one 
of the following conditions is satisfied: 

A) For no C, is it true that 

J, (cp) = - J, (cp - Cl - A-’ In J, (cp)) (2.1) 

B) For no C, is it true that 

-J2 (cp) = J, ((P + Cl + A-l In t---J, (cp)N (2.a) 

Conditions A and B are equivalent and, in particular, are satisfied if at least one of 
the following criteria lo, 2O, 3O is valid: 

lo. -&lnJ,(cp)>h or $In(-JJ,(V))<--A 

for some 'p (this is true, in particular, if J,(v) = 0 or J,(q)= 0 for some tp). 
2O. The functions J,, -J, are defined in different domains. 
30. one of the functions J,, J, is not identically a constant and has either a zero 

or a pole on its Riemann surfacej the complete analytic function /3/ corresponding to the 
second function is univalent (these conditions are satisfied, for example, by real trigono- 
metric polynomials). 

The equivalence of conditions A, B follows from the fact that identities (2.11, (2.2) 
are valid for the same values of C,. 

C) 40. Fd' (0) #O and at least one of the functions Jt is not a constant. 
3) if conditions A, B are satisfied, the IN of the separatrices r,",rl" is of order u. 
If conditions A, B fail to hold, i.e., identities (2.1) and (2.2) are valid for SOE C, 

but criterion 4O is satisfied, then the IN of the separatrices is bounded between two numbers 
of orders u and -~c21n~, respectively. Moreover, there exist sequences of positive P-+0 
such that the IN's are of minimal and maximal orders -t&alnp and u. 

This theorem is a sharper and stronger version of Theorem 1 of /l/. The rigorous proof, 
though elementary, is rather cumbersome. Suffice to say that it relies on ideas from /l/ and 
some standard theorems of analysis. 

3. Non-coincidence of the separatrices in the motion of an asynneth rigiabodg in a 
weak azispnetric imotationat force field. We consider the motion of .an asymmetric 
rigid <body about ,a fixed point. Let a<b<c ,be the reciprocals ‘of the prin - 
cipal moments of inertia of the body. We shall assume that the force field is weak and 
can be expanded in powers of a small parameter u. Fixing some total energy level h>O and 
an area constant H, one can use isoenergetic reduction (also known as reduction of order, see 
Whittaker /4/) to transform to a reduced system of type (l.l), in which x1 = 1, xe = L, cp = g 
are the canonical Andoyer-Deprit variables, 

For f~ = 0, system (1.1) has fixed points 

yl: (L = 0, I = n mod 2n), yz: (L = 0, 1 = 0 mod 2~) 

connected by doubly asymptotic solutions. For p =0, with suitable choice of parameters, 
the separatrices may split and do not intersect. In that case we are in the situationstudied 
in Sects.1 and 2, but the solutions x = sr(cp), x =x8(m) are identical. The separatrices rrn 
will intersect at least in two distinct homoclinic s'olutions , as follows from M0ser's in- 
variant curve theorem and the fact that the succession mapping of system (1.1) has an in- 
variant surface /l/. 

In our previous paper /l/ we considered motion in a gravitational force field, when the 
improper integrals Ji (cp), evaluated along the unperturbed doubly asymptotic solutions, are 
non-constant trigonometric polynomials /2, l/ and so Criterion 3O is effective. In the 
general case the integral Jl(cp) need not be trigonometric polynomials. HOwever, as follows 
from the theorem below, Criterion 4O will apply if at least one of the functions JI (cp) is 
not a constant. 
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Theorem 2. In the Euler-Poinsot problem one always has F," (O)#O. 
The proof relies on the fact that the unperturbed Hamiltonian -G = H,(l, L)- is a 

solution of the equation /2/ 

I/* (a sin2 I + b cots2 1) (G’ - L”) + ‘l,cL2 = h (h = llzbG,“) 

The following theorem holds. 

Theorem 3. Identities (2.1) and (2.2) cannot hold simultaneously for all four pairs 
of neighbouring unperturbed separatrices (even with different constants C,), if at least one 
of the functions Ji(cp) is not a constant. Thus, Conditions A and B are satisfied for some 
pair of separatrices. 

Indeed, identities (2.1)) (2.2) establish a one-to-one correspondence between the 
monotonicity intervals of the positive functions Jr(q), -Jr(m), such that even interval in 
which J, (4 is an increasing (decreasing) function corresponds to a shorter (1,onger) 
interval in which -J, (CP) is an increasing (decreasing) function. The rest of the proof 
is obvious. 

4. Kolnwgomv tori separating perturbed hyperbolic permunent relatias. 
Consider the motion of an asymmetric rigid body in a weak gravitational force field. 

Denote the parameters of the problem by pr = (a, b,c, X,, Y,, Z,,HIG,), where X0, Y,,Z,, are 
the direction cosines of the radius-vector of the centre of gravity relative to principal 
axes of inertia in the frame of the fixed point (the Poincare parameter p here is the product 
of the weight of the body and the distance between the centre of gravity and the fixed point). 

Theorem 4. There exists a domain s, in the parameter space such that for small CL>0 
there exist two-dimensional invariant tori in a neighbourhood of the unperturbed separatrices 
which separate perturbed periodic solutions yl,yz. Hence there exist no heteroclinic sol- 
utions. 

Proof. Let tl* (cp) (i = 1,2,3,4) denote unperturbed doubly asymptotic solutions, so 
chosen that the points rt* (0) are equidistant from the fixed points vi (Fig.2). Let Ji (cp) 
be the corresponding characteristic integrals, aas calculated in /l/. We know that (-I)'+' $ 

Jt (cp)dcp = 2nJo. 

Fig.2 Fig.3 

In the neighbourhood of the perturbed periodic solution yi, choose normal coordinates 
Ei9 qif and let of = %1x11. In the neighbourhood of Xi* we have formulae of type (1.5) for 
the relation between 1 %imodz 1 and the phases .Cpi. Let IIi be two-dimensional area elements 
defined in the neighbourhoods of x1* by the equations 'pi = 0. Define coordinates in each 

ni by cpmod%, II = p-‘mrmod2. Let j = (if l)mod 4. To fix ideas, suppose that the 
perturbed separatrices are situated as shown in Fig.3. In this case J,,> 0. 

Lemrxz. The phase flow of system (1.1) carries each point (fi, (pi = 0, m), (-l)iZ;> 0 on 

n, in time 

Acp = - C, - A-'(ln ((-i)jlj) + In k) (11-t @i (Ij, p)) + 

@,+I (Ii, cp* CL) 

into the point 

lying on rIj, provided that (-l)j1,,> 0. 
The proof follows from Eqs.(l.To and the transformation formulae of /l/. Thanks to the 

symmetry of the unperturbed problem, the constant C, is independent of i. 
Thus, we can consider the mapping 
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of &into II,; similarly, II, is mapped into the next area element. One can also consider 
a mapping T of rI, into itself - the composition of successive mappings of this type. 

Fix constants A and 0 < C,<r/,. If the functions (-l)'+'Ji (cp) are b-close to A in 
some complex neighbourhood of the real circle S {cp) (6, -close in the Cm-metric) , then for 
sufficiently small n>O*S the mapping T is defined in an annulus Cs< --II< i- Cs and 
is O(6)-close in the CO-metric to the mapping T,: 

11 -+I1 

cp +'p - 4c, - ZA-' (In (-II) + In (1 + I,)) - 4h-'In p 

It follows from the formulae for Jl(cp) /l/ that, by suitable choice of the parameters 

Pr, one can guarantee the validity of these conditions. The mapping T preserves the PUncar& 
Cartan integral invariant and satisfies all conditions of Moser's invariant curve theorem, 
provided that 6 is sufficiently small and p< I. The trajectories of system (1.1) pass- 
ing through the invariant curve of T fill out the required tori. 

It is essential that d can be chosen independently of u. A similar result will hold in 
the general case - the motion of a body in a weak axisymmetric irrotational force field - if 
one requires that the characteristic integrals differ by a small amount from non-zero constants. 

It is known 15, 6/ that intersecting separatrices form a rather tangled net, which can- 
not intersect the invariant tori and therefore does not enable the tori to be determined near 
the separatrices. One can prove the following result. 

Theorem 5. If all Ji (cp)+ 0 and the pairs of functions EJi (9)~ eJJ (d (where j = (I f 
l)mod 4, E = =F (-l)i) satisfy Conditions A, B, then every invariant torus of the problem 
which intersects the plane cp = const is a closed curve passing near rb*,rl* (where 1 = (k-i- 
1)mod 4, k = 1, 2,3,4) or x1*,. .., x4* will lie in a domain around yi defined by 1 wimOd 2 I> 
C, I P 0 Cd> 0, provided that P < p (pr). 

In this case the form of the mapping 2' D implies an intersecting phenomenon. The 
Poincare/ rotation number /7/ on an invariant torus (the limit of the quotient of the increment 
to rp by the number of revolutions about the separatrices x1*, x2*, x3*, xP*) will exceed -4 
(C, + A-rln p- A-rln 2)+0 (6). Let us call the torus situated midway between splitting 
separatrices the "centre torus". As u is increased, the invariant tori move from the neighbour- 
hood of the centre torustoward the separatrices.As )I is reduced,conversely,they move from the 
neighbourhood of the separatrices toward the centre torus. It follows from Theorem 5 that 
the rotation number on each invariant torus is at most -4(C, + A--'In p). Summarizing, we see 
that the migration pattern of the tori as u varies is as follows: a torus with fixed rotation 
number is "born" near a separatrix (centre torus), moves, and then "dies" near the centre 
torus (separatrix). Consequently, as u tends to zero the invariant tori experience infinitely 
many birth-death bifurcations. 

5. A rigid body containing cavities filled with an ideal incompressible liquid. 
If the motion of the liquid is irrotational at some instant of time, i.e., the 

velocity can be expressed as the gradient of a univalent function, then by Thompson's Theorem 
this property is conserved at all times. The motion of the rigid body will be described by 
the Euler-Poisson equations, corresponding to the motion of a body whose mass equals the total 
mass of the body-plus-liquid system; the inertia tensor is derived from that of the original 
body by adding the tensor of added moments ofthe liquid /0/. 

If all three principal moments of inertia of the system relative to the fixed point are 
distinct, all results of Sects.l-4 and /l/ remain valid. However, the moments of inertia of 
the body need not satisfy the inequality a-' ( b-’ + c-l /9/. It turns out that as a result 
the restriction A<1 /l/ is relaxed and A may take arbitrary positive values. To verify 
this, it suffices to use the formula A = 6-l [(b - a)(c - b)]‘/ (see /l/J and to consider the 
case in which the body contains an ellipsoidal liquid-filled cavity. The appropriate formulae 
for the added moments of inertia of the lqiuid are well-known /8, lo/. 

It is proved in /l/, in particular, that there exists a domain S, in parameter space, 
satisfying the following condition. If prf=S.5, then for all small' p>O the Perturbed 
separatrices split, do not intersect and are situated as shown in Fig.3;in addition, there 
exist sequences of positive numbers pn+ -0, nn- +O, n -00, such that at n = nla- the out- 
going separatrix r, and incoming separatrix rz intersect near the unperturbed separatrices 
x1*. x2*. x3*, and at c1 = p.,+ they do not intersect. Thanks to the fact that A may now be 
increased at will, one can prove the following result.. 

Theorem 6. There exists a domain s,c s, in the parameter space, satisfying the 
following condition. If PrE s,, there exist sequences of positive numbers &%+ +O, I%- -+ 
o,n-+oo such that at p = n,,- the separatrices r1 and rz intersect near x1*, x2*, x3 * 

and at p = u,+ there exist two-dimensional invariant tori situated near x1*.x**, x3*,x** 
and separating the perturbed permanent rotations Yi. Consequently, as p>O approaches zero 
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one has infinitely many birth-death bifurcations of heteroclinic solutions and separating 
Kolmogorov tori. 

outi!ine of proof. We first observe that the proof in /l/ can be considerably simplified. 
Indeed, if X,=2,=0, Y,= i we have 

Ji(l+=(-l)i(oO- avcosrp), i= I,2 

Ji(o) = (- l)'(ao + QCOS q). i = 394 

Fix Q= -1, i/y'r<a,<l, and choose A to be sufficiently large (.\>A(+,)) (which is 
possible, see /l/). Then the formulae in /l/ take a rather simple form and involve small 
terms 0 (A-9. The sequence I& will correspond to the following number t /l/: 

(t = c,+ A-'In p-j- 2nn + A-'In A-', n = [-ln @nA)]) 

satisfying the condition tmodx= n/Z, and the sequence pn+ to a number t such that tmodn=O. 

It turns out that if a,, is not an element of a certain (probably empty) set, which has no 
limit points in the interior of [O,i). then one can take sufficiently small numbers CL>0 
such that tmod2n=O to form the required sequence pn+. The proof relies on the fact that the 
mapping 2 constructed in Sect.4 is close to the identity. 

We now proceed to a more rigorous discussion. Let p>O be sufficiently small and 
tmod2n= 0. After a few easy manipulations, using an idea from /ll/, one can show that the 
mapping 2 is an exact canonical mapping in the coordinates s1 = s, (I,) = AI, + O(p), omod 2n, which 
is (O(A-*)+ O(wln~))-close together with its first k derivatives to a translation during a 
ti& ‘A_l. along the trajectories of the autonomous system 

op' = - aHjab sl’ = aajacp 
4 

H =,x (- l)‘f((- I)‘s,). f(T) = (III r - 1) r 
z-1 

Here the estimate O(plnn) depends on A, the estimates 

(5.') 

0 (A-'), C (p ln N are uniform on 
any compact subset of the domain of definition Ia~coscpj - 1 <sl<O of H and k is any pre- 
assigned natural number. (In general, it is obviously impossible to ensure smallness in the 
CO-metric for large A, since the width of the corresponding complex domain depends on A and 
may tend to zero as A-4 

The trajectories of system (5.1) are levels of the Hamiltonian a. Using the implicit 
function theorem, one can show that a level yo: H= H, is given by an equation sl= g(o), 
where p ranges over the entire circle 8'. if and only if Ho lies in the interval (f (1 J- nJ + 
f (1 - ay);f (2%) - 2f (1 - 0~))~ which is non-empty for 0 CQ"<L The time T(H,) necessary for a 
phase point (a, o) E y0 of system (5.1) to return to its initial position is not constant when 
% A 0, and so, by analytic continuation, the same holds for all n,~(O,i) with the possible 
exception of a subset with non limit points in [O,i). Then, by Moser's invariant curve theorem, 
the mapping T has an invariant closed curve y close to some level Y,, if k,A are sufficiently 
large and IL <P (pr). The trajectories of system (1.1) passing through a curve Y c IL fill 
out the required invariant torus, which separates perturbed hyperbolic solutions y,, I':. It 
remains to observe that all points in the parameter space close to those chosen in the proof 
also possess the necessary property. 

Suppose now that some of the liquid-filled cavities are not simply connected. Instead 
of assuming that the liquid is in irrotational motion, let US consider a similar but rotational, 
eddy-free motion; then the Euler-Poisson equations will include small gyroscopic terms /S/. 
In that case Theorem 6 remains valid. 

6. !i’ransversal homclinic solutions and quasirandom motions in the dynamias of a heavy 
rigid body. Under fairly general assumptions, the existence of transversally intersec- 
ting separatrices implies the existence of quasirandom motions (a theorem due to 
Alekseyev /12, 13/). In particular, as observed by Ziglin, quasirandom motions will appear 
in the perturbed Euler-Poinsot prolem if the splitting separatrices are transversally inter- 
secting. This will happen when all the functions J,(q) are of fixed signs. Supposing the 
contrary and omitting the Hess-Appelroth case, one obtains the model problem of Sect.1, with 
the hyperbolic periodic solutions z =x1(~), I =x,(q) coinciding and 

J, (cp) = c f a, co3 'p + t&sin (p, --J, (cp) = c + cz2 cos 'p + fiz sin 'p (6.1) 

where Jr (cp)> 0 for all 'p, and the assumption that the separatrices rz', rzM do not 
intersect for small p> 0 is relaxed (if min,J,(cp) = 0, then the separatrices rl', 1'," 
may also intersect, but this effect is not captured by first-order perturbation theory). 
By the remark in Sect.3, an intersection of separatrices I‘," consists of at least two 
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homoclinic solutions. It turns out that the space 

G = {(c, A, Z,, I,) E R": ca > 1, > 0, 1, > 0, A > 0) 

contains a closed set M,, with no interior points, satisfying the following condition: if 

(c, A, I,, U 6~ G \ MO 

1, = ala + fi:, 2, = ae2 + &" 

then for any sufficiently small p>O the separatrices rkl have at least one transversal 
intersection (homoclinic solution), Using the form of the expressions for J1 (cp) /l/ and 
Alekseyev's theorem, we obtainthe desired result. 

Theorem 7. The parameter space pr of the perturbed Euler-Poinsot problem contains a 
closed set M, with no interior points, such that if prs M and p< p(pr) the problem 
has quasirandom solutions. The sets M,, M have measure zero. 

The idea of the proof is based, first, on the fact that near I?, the separatrices I',',P,' 
are regular analytic surfaces which, as surfaces defined in the space 

R'{s = A~%) x {qJ* E (-C,,Ce)) x S'(cp) (8.2) 

are 0 (p In p) -close in the Cw -metric to the surfaces 

r=J1(JI1), Qe=91---A-'lnJ,(%) (6.3) 
s = -Ja(%): $2 = cp - 'Pa 

and, second, on the following sharpened version of the remark in Sect.3: the separatrices TX" 
have contact of even order for at least two distinct homoclinic solutions. Assuming that 
for arbitrary small p>o rr” may have contact of order greater than one and letting p - 0, 
one sees that the conditions (c, A, I,. I*) E Mo and 1, < ca imply the existence of ai* Bi such 
that cL$ + pi'= Zi and 

a1 = a* = a, I Ba = (u - M-’ 41 ('3.4) 
& [L-&e - 3ua& + 2a3 + Au(ca + 1&l = 0 (6.5 

where U= A(e+ a)+O. It follows from (6.41, (6.5) that for each triple (A,c,Z,) there are 
at most seven values of Zp such that (c,A,Z,,lJ o MO. The set MO is a subset of the set of 
roots of a certain polynomial. 

7. Birth-death bifurvaticms of hanoctinic and periodic solutions in the dgnamics of a 

rigid body. 

Theorem 8. Fix i = 1, 2, 3, 4; j = (i + 1)mod 4. There exists a domain S, in the par- 
ameter space of the perturbed Euler-Poinsot problem such that for prES, and p> 0: 

1) As p +O all homoclinic solutions that pass once through the neighbourhood of two 
unperturbed separatrices xi*, "j* experience infinitely many birth-death bifurcations. 

2) There exists a constant C,such that as p -+O all periodic solutions YN Of the 
reduced system (1.1) which pass once in a period 2nN> C,- 2h-'In p through the 
neighbourhood of two unperturbed separatrices xi*, x1* experience infinitely many birth- 
death bifurcations. 

At the same time, every such homoclinic or periodic solution exists as long asln premains 
in a certain interval, whose length is less than a finite constant C, depending on pr: 

3) The domain S, may be ao chosen that for p> 0, p -+O, the numbers of all homoclinic 
and periodic solutions considered in parts 1 and 2 take two distinct positive values infinitely 
many times. 

Outline of proof. It will suffice to consider the problem studied in Sect.6. Fix A>O, 
c>O and choose numbers a, bl#O, &= &O+O such that Z,=aP+fi,B<~*, equalities (6.4) hold 
but (6.5) does not. Determine lp = aa + Bs2. Now let the arbitrary numbers %Y Bi occurring 
in formulae (6.1) for li(cp) satisfy the conditions up+ &a= li, where zi are the numbers 
just evaluated. Then for some values of g,=$l",*,n =ql,". I= t0 we have 

Jl(%) = --J, ($J = c+ a (7.1) 
dJ, (%)l& = --dJ, (9n)/dPz = -+I"# 0 

@‘I Wd/dW # -d=J, NdW 
Wa = $1 - t -- A-’ In J, WI)) 

Conditions (7.1) are sufficient to ensure that pry S.. We now modify the numbers ai. Bi 
slightly, and then, using the implicit function theorem, establish that conditions (7.1) are 
again satisfied for certain values of $19 +,a* t close to $", JlpO, to respectively. Thus it 
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may be assumed that the set S, is in fact a domain. 
Let E'?n',o be normal coordinates near the solution I = 2, (cf) -= z3 (rp) , J’ = p-‘E’q’. With the 

coordinate E' in F, we associate a phase %' by a formula of type (1.5), and with I]' in I :' 
a phase 'pl' by a formula of type (1.4). 

The proof that conditions (7.1) are sufficient relies, first, on the fact that as li goes 
through values corresponding to I= t,modZn there occurs a birth or death bifurcation of two 
transversal intersection curves of the surfaces (6.3); second, one uses the o(CLlnpL)-closeness 
of r,", rz* to the surfaces (6.3) in the space ,(6.2) j and, third, the fact that the solution 
yN is in a domain o< J’< C,, where Co = C,(Ci)- 0 as CT- cn; the following assertion is also 
needed. 

Lemma. Suppose that for some t= t0 the curves (6.3) defined on R1 {s) x Sl{$) have a 
transversal intersection. Then for sufficiently small p>O, corresponding to t = t, mod ?n, 
and sufficiently large CT periodic solutions yN exist with the required properties in the 
neighbourhood of a suitable transversal homoclinic solution. 

It is convenient to deal with this problem in terms of the succession mapping for system 
(1.11, defined in the plane 'p= conat. Let q = 2, (CPA and let r be a transversal point of 
intersection in V, of the curves cut out by the separatrices rr;" in the plane cp= con&. The 
existence of the solutions YN is guaranteed by the method of symbolic dynamics /12-14/. By 
/13, 14/, to that end one must choose neighbourhoods V,, V, of the points 9,' possessing 
certain properties (in other words , one must construct a suitable marching scheme /14/J. In 
the neighbourhood of r we have coordinates J,‘= J’,cp,‘, and also coordinates J,’ = J’, pl’ 
obtained by continuation along the separatrix PI". It turns out that a suitable choice of 

F,, F, is the pair of curvilinear parallelograms defined by the conditions l~'l<l/%? lrl'l< 

l/Fp and IJ,‘I<C,,, IJ,‘j<C,,, respectively, where )Inp- C,,I<nA for small p>O (Fig.4). 
The method described here for constructingamarching 

"9 
scheme /13, 14/, based on using normal coordinates, is 

E' j-1 
always applicable when the existence of transversally 
intersecting separatrices follows from first-order per- 
turbation theory (see examplesin/6/). 

The proof of part 2 of the theorem relies essentially 
on the fact that every periodic solution must pass near 
some transversal homoclinic solution, and therefore is 
born and dies together with the latter. It is noteworthy 
that a similar phenomenon of the birth of periodic sol- 
utionsclose to transversal heteroclinic solutions has 
been observed in a numerical context /15/. 

In order to prove part 3 of the theorem, it suffices 
to establish that the domain S, can be contracted in 
such a way that for any t= S1 the surfaces (6.3) are in 

Fig.4 contact along at most one curve s = const, qz = const, the 
contact is of first order, and the tangent plane is not 

parallel to the *$ axis (see conditions (7.1)). It can be shown that these conditions are 
satisfied if CL, fjl are chosen as the numbers a=1/I;A, &== 1/?$, where A* + B* = l,R#O, with 
S, 1, sufficiently small (IBI<&, 4< 4(B)). In that situation the surfaces (6.3) are in 
contact for only two distinct values of t E S’. 
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PLANAR STANDING AND MARKING-TIME REGIMES OF 
A BIPEDAL WALKING DEVICE* 

V.V. BELBTSKII and M.D. GCLUBITSKAYA 

A walking device standing on one leg, not fastened at its point5 of 
support, is considered. A study is made of how the device maintains 
equilibrium of its supporting leg by compensating oscillations of its 
body. Phase trajectories are analysed. Conditions are investigated 
under which one-way communication is maintained and discontinued while 
the device is moving. Marking-time regimes are constructed. 

The problem of a standing walking device is interesting, first, as a 
problem in the dynamics of servosystems, and, second, as a limiting case 
of the problem of locomotion. Marking-time regimes may be used in con- 
structing a model of space locomotion**. (**Beletskii V.V. and Golubitskaya 
M.D., Model problem of the dynamics of bipedal space locomotion. Preprint 
194, Moscow, Inst. Prikl. Mat. Akad. Nauk SSSR, 1982). 

1. Description of the mode?,. Equatio?ls of the standi?lgpwbtem. We I conoidef' a bi- 

pedal walking device consisting of a heavy rigid body and atpair of identicalwkightless 
legs (Fig.1) ; each leg may consist of one or several segments. The legs are attached to the 
body of the device by double hinges at a point 0. The device is assumed to be supported on 
one leg only. The leg is in contact with the supporting surface at a single point S, at which 
there acts a reaction force R,; communication with the surface is one-way (non-restoring). 
At the hinge 0 a controlling torque Q acts on the body and a torque -Q on the leg. 

We assume that the supporting leg is maintained in equilibrium - the suspension point 0 
and support point S remain fixed. The system is subject to feedback: the motion of the body 
is designed to maintain equilibrium of the supporting leg. 

We shall consider planar regimes of motion. Fix a coordinate frame NXYZ (Fig.1) , 
where N is the origin and the NZ axis is directed vertically upward. The support and 
suspension point5 are assumed to lie in the NYZ plane: S = (0, d,O), where d = const, d,O, 
is the horizontal displacement of the support, and 0 = (0, 0, H), where H = con&, H> 0, is 

the height of the suspension point of the legs. It is assumed that the body does not spin; 
the centre of mass C moves in the NYZ plane. 

We adopt the following notation: 0 is the angle between the NZ 'axis and the vector OC 
in the positively oriented system NXYZ (Fig.11, t is the time, g is the acceleration of free. 

*Prikl.Matem.Mekhan.,53,2,226-237,1989 


